Acta Crystallographica Section C

## Crystal Structure

Communications
ISSN 0108-2701

# $\mathrm{K}_{2}\left[\mathrm{HCr}_{2} \mathrm{AsO}_{10}\right]$ : redetermination of phase II and the predicted structure of phase I 

T. J. R. Weakley, ${ }^{\text {a }}$ E. R. Ylvisaker, ${ }^{\text {b }}$ R. J. Yager, ${ }^{\text {b }}$ P. Wu, ${ }^{\text {b }}$ P. Photinos ${ }^{\text {b }}$ and S. C. Abrahams ${ }^{\text {b }}$ *<br>${ }^{\text {a Department of Chemistry, University of Oregon, Eugene, OR 97403, USA, and }}$ ${ }^{\text {b }}$ Physics Department, Southern Oregon University, Ashland, OR 97520, USA Correspondence e-mail: sca@mind.net

Received 9 August 2004
Accepted 18 October 2004
Online 11 November 2004
Our prediction that phase II of dipotassium hydrogen chromatoarsenate, $\mathrm{K}_{2}\left[\mathrm{HCr}_{2} \mathrm{AsO}_{10}\right]$, is ferroelectric, based on the analysis of the atomic coordinates by AverbuchPouchot, Durif \& Guitel [Acta Cryst. (1978), B34, 37253727], led to an independent redetermination of the structure using two separate crystals. The resulting improved accuracy allows the inference that the H atom is located in the hydrogen bonds of length 2.555 (5) $\AA$ which form between the terminal O atoms of shared $\mathrm{AsO}_{3} \mathrm{OH}$ tetrahedra in adjacent $\mathrm{HCr}_{2} \mathrm{AsO}_{10}{ }^{2-}$ ions. The largest atomic displacement of $0.586 \AA$ between phase II and the predicted paraelectric phase I is by these two O atoms. The H atoms form helices of radius $\sim 0.60 \AA$ about the $3_{1}$ or $3_{2}$ axes. Normal probability analysis reveals systematic error in seven or more of the earlier atomic coordinates.

## Comment

The possibility that the potential barrier between the structure of $\mathrm{K}_{2}\left[\mathrm{HCr}_{2} \mathrm{AsO}_{10}\right]$ phase II (Averbuch-Pouchot et al., 1978; hereinafter A-P) and that of paraelectric phase I is surmountable below the Curie temperature led to the prediction that phase II is ferroelectric (Abrahams, 2003). Crystals grown for associated physical property measurements were also used for an independent structural redetermination on two different crystals. Unsurprisingly, crystal 1 in space group $P 3_{1}$ has a small enantiomorphic component, whereas crystal 2 in space group $P 3_{2}$ is single-component (see the Refinement section for further discussion of this aspect).

The asymmetric unit of phase II contains one independent $\mathrm{AsO}_{3} \mathrm{OH}$ and two $\mathrm{CrO}_{4}$ tetrahedra, sharing O atoms to form individual $\mathrm{HAsCr}_{2} \mathrm{O}_{10}{ }^{2-}$ ions (Fig. 1). The average $\mathrm{Cr}-\mathrm{O}$ distance for the terminal O atoms in both crystals is 1.600 (4) $\AA$ (Table 1 ) and this does not differ significantly from the value of 1.612 (7) $\AA$ in $\mathrm{II}-\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ (Weakley et al., 2004), whereas the mean bridging $\mathrm{Cr}-\mathrm{O}$ distance of 1.844 (4) $\AA$ in
$\mathrm{K}_{2}\left[\mathrm{HCr}_{2} \mathrm{AsO}_{10}\right]$ significantly exceeds the value of 1.785 (4) $\AA$ in $\mathrm{II}-\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$.

Unlike the bond-length distribution in the $\mathrm{CrO}_{4}$ tetrahedra, the As-O distance of 1.632 (3) $\AA$ for the terminal O5 atom is significantly less than the mean As-O distance of 1.699 (9) $\AA$ for the two bridging atoms and the terminal O 6 atom in the $\mathrm{AsO}_{3} \mathrm{OH}$ tetrahedron. The short inter-anionic contact O5 $\cdots \mathrm{O}^{\mathrm{i}}$ [2.550 (11) and 2.555 (5) $\AA$ for crystals 1 and 2, respectively; symmetry code: (i) $y-x,-x, z-\frac{1}{3}$, for crystal 1 , and $-y, x-y, z-\frac{1}{3}$, for crystal 2] results from the formation of an $\mathrm{O} 5 \cdots \mathrm{H} \cdots \mathrm{O}^{\mathrm{i}}$ bond between $\mathrm{HAsCr}_{2} \mathrm{O}_{10}{ }^{2-}$ ions. The arsenate distances given in Supplementary Table S1 show that the mean bridging and terminal As-O distances generally do not differ significantly $[1.708$ (20) and 1.682 (12) Å], and so the mean As-O distance may be taken as 1.69 (2) $\AA$.

The bond-valence (BV) sums (Brown \& Altermatt, 1985) for each atom in $\mathrm{K}_{2}\left[\mathrm{HCr}_{2} \mathrm{AsO}_{10}\right]$ are 5.03 (3) for As, 5.98 (4) for Cr 1 and 5.96 (4) for $\mathrm{Cr} 2,1.327$ (8) for K 1 and 1.157 (6) for K2, 1.612 (14) for O5 and 1.400 (14) for O6, and 1.94-2.20 (3) for all other O atoms in crystal 2, with comparable values in


Figure 1
(a). The $\mathrm{K}_{2}\left[\mathrm{HCr}_{2} \mathrm{AsO}_{10}\right]$ structure at 295 K . The $\mathrm{O} 6-\mathrm{H} \cdots \mathrm{O} 5$ hydrogen bonds are shown as dashed lines. The labelling of all atoms in the unit cell is given in Supplementary Fig. S1. (b) The $\mathrm{HCr}_{2} \mathrm{AsO}_{10}{ }^{2-}$ ion of crystal 1, showing the interionic hydrogen bond, with displacement ellipsoids drawn at the $50 \%$ probability level. The H atom is shown as a sphere and the hydrogen bond as single lines. [Symmetry code: (i) $y-x,-x, z-\frac{1}{3}$.]
crystal 1. The connectivity within the asymmetric unit is shown in Fig. 1(b), and the labelling for all atoms in the unit cell is given in Supplementary Fig. S1. The BV sum for As agrees with the expected value, while those for $\mathrm{Cr}, \mathrm{K}$ and O atoms other than O 5 and O 6 agree with the values observed in II$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ (Weakley et al., 2004). The deficit of 0.99 in the joint valence of atoms O 5 and O 6 is clearly equivalent to an H atom which, while not located directly, results in the bond revealed in both crystals by the short O5 . O 6 distance. The H atoms form helices of radius $\sim 0.60 \AA$ about the $3_{1}$ or $3_{2}$ axes (Fig. 2), as they link $\mathrm{HCr}_{2} \mathrm{AsO}_{10}{ }^{2-}$ anions. H -atom location was not considered in the report by A-P; if taken as midway between O 5 and $\mathrm{O}^{\mathrm{i}}$ (Table 2), then the H atom in crystal 2 is at ( 0.0555 , $0.0307,-0.0245$ ). Since the BV sum for As-O6 is 1.23 (1), this bond is close to single, hence the H atom is most likely to be nearer to O6.

Atomic coordinates ( $x^{\prime}, y^{\prime}, z^{\prime}$ ) in the predicted supergroup $P 3_{1} 21$ or $P 3_{2} 21$ are derived from the coordinates of related pairs of atoms in $P 3_{1}$ or $P 3_{2}$ under the higher-symmetry constraint (Table 2). The maximum differences between the positions of independent atoms in phase II and those predicted in paraelectric phase I, following the necessary symmetry conversions, are $0.41 \AA$ for H and $0.586 \AA$ for O5 and O6, confirming the basis for the original prediction of ferroelectricity (Abrahams, 2003). [Atoms O9 and O10 in the designation of Averbuch-Puchot et al. (1978) are equivalent to atoms O5 and O6 in Table 2.] The predicted atomic arrangement in phase I is shown in Supplementary Figs. S2 and S3.

The formation of $\mathrm{K}_{2}\left[\mathrm{CrO}_{3} \mathrm{AsO}_{3} \mathrm{OHCrO}_{3}\right]$ from its constituent ions (see Experimental) is possible only by fission of an $\mathrm{O}-\mathrm{Cr}-\mathrm{O}$ bond in the $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ anion and the presence of an $\mathrm{AsO}_{3} \mathrm{OH}^{2-}$ ion. The two resulting $\mathrm{As}-\mathrm{O}-\mathrm{Cr}$ bonds form by elimination of $\mathrm{O}^{2-}$ as $\mathrm{H}_{2} \mathrm{O}$. The protonation of a terminal O atom on As results in chains of $\mathrm{CrO}_{3} \mathrm{AsO}_{3} \mathrm{OHCrO}_{3}{ }^{2-}$ ions linked through hydrogen bonds, as shown in Figs. 1(a) and 2.


Figure 2
The $\mathrm{K}_{2}\left[\mathrm{HCr}_{2} \mathrm{AsO}_{10}\right]$ structure at 298 K , with H atoms shown as small spheres and K atoms as large spheres. The $\mathrm{AsO}_{4}$ tetrahedra are plushatched and the $\mathrm{CrO}_{4}$ tetrahedra are cross-hatched.

The potential barrier to these rearrangements appears to be surmounted only at aqueous reaction solution temperatures close to boiling.

Comparison of the three independent sets of atomic coordinates is made by plotting the ordered experimental quantiles $Q_{\exp }=\left|\xi_{i}(1)-\xi_{i}(2)\right| /\left\{\sigma^{2}\left[\xi_{i}(1)\right]+\sigma^{2}\left[\xi_{i}(2)\right]\right\}^{1 / 2}$ against the corresponding normal quantiles $Q_{\text {norm }}$, where $\xi_{i}(1), \xi_{i}(2)$ are the $i$ th parameters from the first and second independent determinations with the same setting, and $\sigma\left[\xi_{i}(1)\right], \sigma\left[\xi_{i}(2)\right]$ are the corresponding standard uncertainties (s.u.) of each parameter. In the absence of error, a linear array of unit slope and zero intercept results (Abrahams \& Keve, 1971). The $Q_{\text {norm }}$ magnitudes are conveniently calculated by the program NORMPA (Ross, 2003).

The 45 atomic coordinate magnitudes determined with crystals 1 and 2 are compared in Fig. 3, the straight line giving the fit obtained by linear regression. The absence of outliers and the small departure of the slope from unity or linearity is indicative of minor systematic error in either coordinate set, but with joint s.u. (j.s.u.) values that are underestimated by a factor of $\sim 1.3$. The corresponding normal probability comparison of each set with the A-P atomic coordinates (Supplementary Figs. S4 and S5) contrasts strongly with that in Fig. 3. Seven $Q_{\exp }-Q_{\text {norm }}$ terms in each of the latter two cases depart strongly from linearity (Table 3). These may hence be rejected as outliers, since major departures from a normal distribution can be due only to major systematic error. The strong possibility of uncompensated enantiomorphous twinning giving rise to the strong parameter correlation in the least-squares refinement noted by A-P is one of several likely sources of error. The remaining 38 terms exhibit a slightly Sshaped distribution, with j.s.u. values underestimated by a factor of $\sim 1.7$ in the comparison of crystal 1 and A-P, and of $\sim 2.0$ for the comparison of crystal 2 and A-P. The correlation coefficient in all fits made by linear regression is $0.987-0.992$. The experimental uncertainties should be corrected by factors


Figure 3
A normal probability $Q_{\text {exp }}-Q_{\text {norm }}$ plot for the atomic coordinates determined for $\mathrm{K}_{2}\left[\mathrm{HCr}_{2} \mathrm{AsO}_{10}\right]$, with data for crystal 1 plotted versus those for crystal 2.
not less than those derived from the magnitude of the slopes listed in Table 3; inclusion of the outliers would clearly increase these factors.

The recommended phase-transition nomenclature (Tolédano et al., 1998, 2001) for phases I and II of $\mathrm{K}_{2}\left[\mathrm{HCr}_{2} \mathrm{AsO}_{10}\right]$, using the thermal values of Ylvisaker et al. (2001), is $\mathrm{I} \mid \sim 590-$ $540 \mathrm{~K} \mid P 3_{2} 21$ (152) $|Z=3|$ non-ferroic $\mid$ decomposes above $\sim 590 \mathrm{~K}$, II $|540-270 \mathrm{~K}| P 3_{2}(145)|Z=3|$ ferroelectric $\mid 2$ variants, lower thermal limit not known.

## Experimental

Averbuch-Pouchot et al. (1978) prepared the title chromatoarsenate by the reaction

$$
\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{H}_{3} \mathrm{AsO}_{4} \rightarrow \mathrm{~K}_{2}\left[\mathrm{HCr}_{2} \mathrm{AsO}_{10}\right]+\mathrm{H}_{2} \mathrm{O}
$$

Substitution of either $0.5\left[\mathrm{As}_{2} \mathrm{O}_{5} \cdot x \mathrm{H}_{2} \mathrm{O}\right]$ with $x \simeq 3$ or $\mathrm{KH}_{2} \mathrm{AsO}_{4}$ for $\mathrm{H}_{3} \mathrm{AsO}_{4}$ also yields $\mathrm{K}_{2} \mathrm{HCr}_{2} \mathrm{AsO}_{10}$ (CAS Registry No. 69107-38-6). Initial crystal growth in either reaction using $99.9 \%$ pure starting products with 0.1 mol of each reactant dissolved in about $10 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$, on heating to boiling for several minutes and then cooling naturally to room temperature, commonly gives two crops of strong red-orange [ISCC-NBS Color (Suppl. to NBS Circular 553); a complete list with RGB values is given at http://swiss.csail.mit.edu/~jaffer/Color/nbsiscc.pdf and also at http://tx4.us/nbs-iscc.htm] crystals (Weakley et al., 2004). Two crystals from first-growth crops were selected for the present study. The solubility at 298 K was determined as $207 \mathrm{~g} \mathrm{l}^{-1}$.

## Crystal 1

## Crystal data

$\mathrm{K}_{2}\left[\mathrm{HCr}_{2} \mathrm{AsO}_{10}\right]$
$M_{r}=418.13$
Trigonal, $P 3_{1}$
$a_{1}=7.6931(8) \AA$
$a_{2}=7.6931(8) \AA$
$c=14.623$ (3) $\AA$
$V=749.50(19) \AA^{3}$
$Z=3$
$D_{x}=2.779 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Enraf-Nonius CAD-4
diffractometer
$/ 2 \theta$ scans
Absorption correction: analytical
(de Meulenaer \& Tompa, 1965)
$T_{\text {min }}=0.205, T_{\text {max }}=0.320$
3208 measured reflections
2051 independent reflections
2040 reflections with $I>2 \sigma(I)$

## Refinement

```
Refinement on \(F^{2}\)
\(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050\)
\(w R\left(F^{2}\right)=0.129\)
\(S=1.29\)
2051 reflections
137 parameters
H atom treated by a mixture of
        independent and constrained
    refinement
\(w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0086 P)^{2}\right.\)
        \(+7.6027 P]\)
    where \(P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3\)
```


## Crystal 2

## Crystal data

$\mathrm{K}_{2}\left[\mathrm{HCr}_{2} \mathrm{AsO}_{10}\right]$
$M_{r}=418.13$
Trigonal, $P 3_{2}$
$a_{1}=7.6963$ (9) $\AA$
$a_{2}=7.6963(9) \AA$
$c=14.6171$ (11) A
$V=749.82(14) \AA^{3}$
$Z=3$
$D_{x}=2.778 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=13.5-14.9^{\circ}$
$\mu=6.33 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Hexagonal prism, strong
red-orange
$0.29 \times 0.13 \times 0.11 \mathrm{~mm}$

## Data collection

Enraf-Nonius CAD-4
1224 independent reflections
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: none (neither analytical corrections nor azimuthal scans for crystal 2 resulted in significantly improved residuals or standard uncertainties, hence uncorrected intensities were used)
2560 measured reflections
1182 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.011$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-8 \rightarrow 8$
$k=0 \rightarrow 9$
$l=-18 \rightarrow 18$
3 standard reflections every 300 reflections frequency: 120 min intensity decay: $0.5 \%$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.053$
$S=1.08$
1224 reflections
137 parameters
H atom treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0181 P)^{2}\right.$
$+0.0502 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.008$
$\Delta \rho_{\text {max }}=0.46 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.33 \mathrm{e}^{-3}$
Extinction correction: Zachariasen (1967)

Extinction coefficient:
$9.6(12) \times 10^{-6}$
Absolute structure: Flack (1983), with 1224 Bijvoet pairs
Flack parameter $=0.030(16)$

Table 1
Selected distances ( $\AA$ ) in $\mathrm{K}_{2}\left[\mathrm{HCr}_{2} \mathrm{AsO}_{10}\right]$ phase II.
Only K-O distances less than $3.08 \AA$ are given. The uncertainty in the averaged $\mathrm{K}-\mathrm{O}$ distances was calculated using Bessel's method.

| Bond | Crystal 1 | Crystal 2 |
| :--- | :--- | :--- |
| $\mathrm{Cr} 1-\mathrm{O} 1$ | $1.609(12)$ | $1.599(4)$ |
| $\mathrm{Cr} 1-\mathrm{O} 2$ | $1.602(10)$ | $1.597(4)$ |
| $\mathrm{Cr} 1-\mathrm{O} 3$ | $1.594(13)$ | $1.599(4)$ |
| $\mathrm{Cr} 1-\mathrm{O} 4$ | $1.848(8)$ | $1.840(4)$ |
| $\mathrm{Cr} 2-\mathrm{O} 7$ | $1.842(8)$ | $1.846(3)$ |
| $\mathrm{Cr} 2-\mathrm{O} 8$ | $1.599(13)$ | $1.596(4)$ |
| $\mathrm{Cr} 2-\mathrm{O} 9$ | $1.600(9)$ | $1.595(4)$ |
| $\mathrm{Cr} 2-\mathrm{O} 10$ | $1.606(11)$ | $1.600(4)$ |
|  |  |  |
| $\mathrm{As}-\mathrm{O} 4$ | $1.707(9)$ | $1.707(4)$ |
| $\mathrm{As}-\mathrm{O} 5$ | $1.633(8)$ | $1.632(3)$ |
| $\mathrm{As}-\mathrm{O} 6$ | $1.686(11)$ | $1.692(4)$ |
| $\mathrm{As}-\mathrm{O} 7$ | $1.695(8)$ | $1.704(4)$ |
|  |  |  |
| $\mathrm{K} 1-\mathrm{O} \times 7$ | $2.720-2.854$ | $2.724-2.871$ |
| $\langle d(\mathrm{~K}-\mathrm{O})\rangle$ | $2.78(5)$ | $2.78(6)$ |
| $\mathrm{K} 2-\mathrm{O} \times 8$ | $2.760-3.075$ | $2.765-3.076$ |
| $\langle d(\mathrm{~K}-\mathrm{O})\rangle$ | $2.88(12)$ | $2.89(12)$ |

The general structure solution made use of a SIR92 electrondensity map (Altomare et al., 1994). The Flack (1983) parameter shows that the space group for crystal 1 is primarily $P 3_{1}$ but with a small enantiomorphic component, whereas the space group for crystal 2 does not differ significantly from $P 3_{2}$. The H atom could not

Table 2
Atomic coordinates of $\mathrm{K}_{2}\left[\mathrm{HCr}_{2} \mathrm{AsO}_{10}\right]$ in phase II and predicted coordinates in phase I, with component $[\Delta(x), \Delta(y)$ and $\Delta(z)]$ and total [ $\Delta(x y z)$ ] differences between the phases ( A ).
$a=7.6963$ (9) and $c=14.6171$ (11) $\AA ; z^{*}=z-0.34541 ; \Delta x=\left(x-x^{\prime}\right) a, \Delta y=\left(y-y^{\prime}\right) a, \Delta z=\left(z^{*}-z^{\prime}\right) c \AA$.

|  | Wyckoff position $\dagger$ $P 3_{2}, P 3_{2} 21$ | $x$ | $y$ | $z^{*}$ | $x^{\prime}$ | $y^{\prime}$ | $z^{\prime}$ | $\Delta(x)$ | $\Delta(y)$ | $\Delta(z)$ | $\Delta(x y z)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| As | 3(a), 3(b) | 0.12958 (6) | 0.02179 (6) | 0.15463 (5) | 0.12958 | 0 | 0.16667 | 0 | 0.168 | -0.176 | 0.243 |
| Cr1 | 3(a) | 0.00117 (11) | -0.41910 (11) | 0.08497 (5) | 0.00411 | -0.42195 | 0.07858 | -0.023 | 0.022 | 0.093 | 0.098 |
| $6(c) \quad 0.42899$ (11) 0.42481 (11) 0.26114 (5) |  |  |  |  |  |  |  |  |  |  |  |
| Cr2 | 3(a) | 0.42899 (11) | 0.42481 (11) | 0.26114 (5) | 0.42606 | 0.42195 | 0.25475 | -0.022 | -0.022 | 0.093 | 0.098 |
| K1 | 3(a), 3(a) | 0.43080 (16) | 0.45187 (16) | 0.00095 (8) | 0.44134 | 0.44134 | 0 | -0.081 | 0.081 | 0.014 | 0.115 |
| K2 | 3(a), 3(b) | 0.60914 (17) | 0.00606 (17) | 0.17366 (8) | 0.60914 | 0 | 0.16667 | 0 | -0.047 | 0.102 | 0.112 |
| H $\ddagger$ | 3(a), 3(a) | 0.0555 | 0.0307 | -0.0245 | 0.0532 | 0.0532 | 0 | 0.012 | -0.173 | -0.364 | 0.405 |
| O1 | 3(a) | 0.1424 (6) | -0.4423 (7) | 0.0116 (3) | 0.1531 | -0.4608 | 0.0123 | -0.081 | 0.142 | -0.010 | 0.164 |
| $6(c)$ |  |  |  |  |  |  |  |  |  |  |  |
| O8 | 3(a) | 0.6242 (6) | 0.4793 (7) | 0.3203 (4) | 0.6139 | 0.4608 | 0.3210 | 0.080 | 0.142 | -0.010 | 0.164 |
| O2 | 3(a) | -0.0883 (8) | -0.5988 (6) | 0.1570 (3) | -0.1084 | -0.5949 | 0.1522 | 0.155 | 0.030 | 0.070 | 0.173 |
| $6(c)$ |  |  |  |  |  |  |  |  |  |  |  |
| O9 | 3(a) | 0.4665 (9) | 0.5909 (6) | 0.1860 (3) | 0.4866 | 0.5949 | 0.1812 | -0.155 | -0.031 | 0.070 | 0.173 |
| O3 | 3(a) | -0.1692 (6) | -0.4012 (7) | 0.0304 (3) | -0.1567 | -0.3968 | 0.0171 | -0.096 | -0.034 | 0.196 | 0.221 |
|  |  |  |  |  |  |  |  |  |  |  |  |
| O10 | 3(a) | 0.2526 (7) | 0.3923 (7) | 0.3295 (3) | 0.2401 | 0.3968 | 0.3162 | 0.096 | -0.035 | 0.194 | 0.219 |
| O4 | 3(a) | 0.1520 (6) | -0.1879 (6) | 0.1512 (3) | 0.1602 | -0.1874 | 0.1416 | -0.063 | -0.004 | 0.140 | 0.154 |
| $6(c)$ |  |  |  |  |  |  |  |  |  |  |  |
| O7 | 3(a) | 0.3559 (5) | 0.1869 (5) | 0.2014 (3) | 0.3477 | 0.1874 | 0.1918 | 0.063 | -0.004 | 0.140 | 0.154 |
| O5 | 3(a) | 0.0914 (6) | 0.1001 (5) | 0.0570 (2) | 0.0465 | 0.0598 | 0.0815 | 0.346 | 0.310 | -0.358 | 0.586 |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |

$\dagger$ Each atom occupies the general 3(a) Wyckoff position of subgroup $P 3_{2}$ with coordinates $x, y, z ; \bar{y}, x-y, z+\frac{2}{3} ; \bar{x}+y, \bar{x}, z+\frac{1}{3}$. In supergroup $P 3_{2} 21$, the special $3(a)$ positions are $x, 0, \frac{2}{3} ; 0, x, \frac{1}{3} ; \bar{x}, \bar{x}, 0$, and the $3(b)$ positions are $x, 0, \frac{1}{6} ; 0, x, \frac{5}{6} ; \bar{x}, \bar{x}, \frac{1}{2}$, with the $6(c)$ positions as in $P 3_{2}+\left(y, x, \bar{z} ; \bar{x}, \bar{x}+y, \bar{z}+\frac{2}{3}, x-y, \bar{y}, \bar{z}+\frac{1}{3}\right)$. $\ddagger \mathrm{H}$-atom coordinates in both phases are taken as midway between those of $\mathrm{O} 5(x, y, z)$ and $\mathrm{O} 6\left(\bar{y}, x-y, \frac{2}{3}+z\right)$.

Table 3
Linear-regression indicators for the $\mathrm{K}_{2}\left[\mathrm{HCr}_{2} \mathrm{AsO}_{10}\right] Q_{\exp }-Q_{\text {norm }}$ plots.

| $\xi(1)$ | $\xi(2)$ | Slope | Intercept | Correlation coefficient | Ordered rejected outliers |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Crystal 1 | Crystal 2 | 1.34 (2) | -0.14 (2) | 0.992 | None |
| Crystal 1 | Averbuch-Puchot et al. (1978) | 1.72 (5) | -0.15 (5) | 0.987 | $\begin{aligned} & 51.0>\mathrm{O} 7 z, \\ & \mathrm{~K} 1 x, \mathrm{~K} 1 y, \\ & \mathrm{Cr} 2 z, \mathrm{~K} 1 z, \\ & \mathrm{~K} 2 z, \mathrm{As} x \\ & >4.6 \end{aligned}$ |
| Crystal 2 | Averbuch-Puchot et al. (1978) | 2.02 (5) | -0.22 (5) | 0.990 | $\begin{aligned} & 32.7>\mathrm{K} 1 y, \\ & \mathrm{~K} 1 x, \mathrm{Cr} 2 z, \\ & \text { Asy, K} 1 z, \\ & \text { As } x, \mathrm{~K} 2 z \\ & >6.6 \end{aligned}$ |

be located directly with confidence in either crystal but was later inferred (see Comment).

For both crystals, data collection: CAD-4-PC Software (EnrafNonius, 1993); cell refinement: CAD-4-PC Software; data reduction: TEXSAN (Molecular Structure Corporation, 1997); program(s) used to solve structure: TEXSAN; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORIGINS (OriginLab Corporation, 1994) and ATOMS (Dowty, 2003).

It is a pleasure to thank Crystal Anderson, René Murata, Corianne Hart, Brant Jones, Jason E. Stephens and Russel D. Wiegel, undergraduates at Southern Oregon University, who prepared and made early calorimetric measurements on $\mathrm{K}_{2}\left[\mathrm{HCr}_{2} \mathrm{AsO}_{10}\right]$, Professor D. C. Johnson and Daniel Ruebusch, University of Oregon, for their kindness in taking X-ray powder diffraction scans, and the National Science Foundation (grant Nos. DMR-9708246 and DMR-0137323) for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1472). Five additional figures and one further table are also available. Services for accessing these data are described at the back of the journal.

## References

Abrahams, S. C. (2003). Acta Cryst. B59, 541-556.
Abrahams, S. C. \& Keve, E. T. (1971). Acta Cryst. A27, 157-165.
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Averbuch-Pouchot, M. T., Durif, A. \& Guitel, J. C. (1978). Acta Cryst. B34, 3725-3727.
Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.
Dowty, E. (2003). ATOMS. Version 6.1. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA. (URL: http://www.shapesoftware.com.)
Enraf-Nonius (1993). CAD-4-PC Software. Version 1.2. Enraf-Nonius, Delft, The Netherlands.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
Molecular Structure Corporation (1997). TEXSAN for Windows. Version 1.8. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
OriginLab Corporation (1994). ORIGIN. OriginLab Corporation, 1 Roundhouse Plaza, Northampton, MA 01060, USA.
Ross, C. R. (2003). NORMPA. Unpublished. Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN 38105-2794, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Tolédano, J.-C., Berry, R. S., Brown, P. J., Glazer, A. M., Metselaar, R., Pandey, D., Perez-Mato, J. M., Roth, R. S. \& Abrahams, S. C. (2001). Acta Cryst. A57, 614-626.
Tolédano, J.-C., Glazer, A. M., Hahn, Th., Parthé, E., Roth, R. S., Berry, R. S., Metselaar, R. \& Abrahams, S. C. (1998). Acta Cryst. A54, 1028-1033.
Weakley, T. J. R., Ylvisaker, E. R., Yager, R. J., Stephens, J. E., Wiegel, R. D., Mengis, M., Bauer, M. R., Wu, P., Photinos, P. \& Abrahams, S. C. (2004). Acta Cryst. B60, 705-715.
Ylvisaker, E. R., Jones, B. M., Yager, R. J., Murata, C. R., Anderson, C., Photinos, P., Wu, P. \& Abrahams, S. C. (2001). Unpublished report. Southern Oregon University, Ashland, Oregon, USA.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

